\(\int \frac {1}{\sqrt [3]{x} (a+b x)} \, dx\) [678]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 100 \[ \int \frac {1}{\sqrt [3]{x} (a+b x)} \, dx=-\frac {\sqrt {3} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt [3]{a} b^{2/3}}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}} \]

[Out]

-3/2*ln(a^(1/3)+b^(1/3)*x^(1/3))/a^(1/3)/b^(2/3)+1/2*ln(b*x+a)/a^(1/3)/b^(2/3)-arctan(1/3*(a^(1/3)-2*b^(1/3)*x
^(1/3))/a^(1/3)*3^(1/2))*3^(1/2)/a^(1/3)/b^(2/3)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {58, 631, 210, 31} \[ \int \frac {1}{\sqrt [3]{x} (a+b x)} \, dx=-\frac {\sqrt {3} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt [3]{a} b^{2/3}}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}} \]

[In]

Int[1/(x^(1/3)*(a + b*x)),x]

[Out]

-((Sqrt[3]*ArcTan[(a^(1/3) - 2*b^(1/3)*x^(1/3))/(Sqrt[3]*a^(1/3))])/(a^(1/3)*b^(2/3))) - (3*Log[a^(1/3) + b^(1
/3)*x^(1/3)])/(2*a^(1/3)*b^(2/3)) + Log[a + b*x]/(2*a^(1/3)*b^(2/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 58

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[-(b*c - a*d)/b, 3]}, Simp[L
og[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Dist[3/(2*b), Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1/
3)], x] - Dist[3/(2*b*q), Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && NegQ
[(b*c - a*d)/b]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}+\frac {3 \text {Subst}\left (\int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{a} x}{\sqrt [3]{b}}+x^2} \, dx,x,\sqrt [3]{x}\right )}{2 b}-\frac {3 \text {Subst}\left (\int \frac {1}{\frac {\sqrt [3]{a}}{\sqrt [3]{b}}+x} \, dx,x,\sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}} \\ & = -\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}+\frac {3 \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}\right )}{\sqrt [3]{a} b^{2/3}} \\ & = -\frac {\sqrt {3} \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{a} b^{2/3}}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.03 \[ \int \frac {1}{\sqrt [3]{x} (a+b x)} \, dx=\frac {-2 \sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )-2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )+\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt [3]{x}+b^{2/3} x^{2/3}\right )}{2 \sqrt [3]{a} b^{2/3}} \]

[In]

Integrate[1/(x^(1/3)*(a + b*x)),x]

[Out]

(-2*Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x^(1/3))/a^(1/3))/Sqrt[3]] - 2*Log[a^(1/3) + b^(1/3)*x^(1/3)] + Log[a^(2/3)
 - a^(1/3)*b^(1/3)*x^(1/3) + b^(2/3)*x^(2/3)])/(2*a^(1/3)*b^(2/3))

Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.96

method result size
derivativedivides \(-\frac {\ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{2 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\) \(96\)
default \(-\frac {\ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{2 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\) \(96\)

[In]

int(1/x^(1/3)/(b*x+a),x,method=_RETURNVERBOSE)

[Out]

-1/b/(a/b)^(1/3)*ln(x^(1/3)+(a/b)^(1/3))+1/2/b/(a/b)^(1/3)*ln(x^(2/3)-(a/b)^(1/3)*x^(1/3)+(a/b)^(2/3))+3^(1/2)
/b/(a/b)^(1/3)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x^(1/3)-1))

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 313, normalized size of antiderivative = 3.13 \[ \int \frac {1}{\sqrt [3]{x} (a+b x)} \, dx=\left [\frac {\sqrt {3} a b \sqrt {\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} \log \left (\frac {2 \, b^{2} x - a b + \sqrt {3} {\left (a b x^{\frac {1}{3}} + \left (-a b^{2}\right )^{\frac {1}{3}} a + 2 \, \left (-a b^{2}\right )^{\frac {2}{3}} x^{\frac {2}{3}}\right )} \sqrt {\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} - 3 \, \left (-a b^{2}\right )^{\frac {2}{3}} x^{\frac {1}{3}}}{b x + a}\right ) + \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b^{2} x^{\frac {2}{3}} + \left (-a b^{2}\right )^{\frac {1}{3}} b x^{\frac {1}{3}} + \left (-a b^{2}\right )^{\frac {2}{3}}\right ) - 2 \, \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b x^{\frac {1}{3}} - \left (-a b^{2}\right )^{\frac {1}{3}}\right )}{2 \, a b^{2}}, \frac {2 \, \sqrt {3} a b \sqrt {-\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} \arctan \left (\frac {\sqrt {3} {\left (2 \, b x^{\frac {1}{3}} + \left (-a b^{2}\right )^{\frac {1}{3}}\right )} \sqrt {-\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}}}{3 \, b}\right ) + \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b^{2} x^{\frac {2}{3}} + \left (-a b^{2}\right )^{\frac {1}{3}} b x^{\frac {1}{3}} + \left (-a b^{2}\right )^{\frac {2}{3}}\right ) - 2 \, \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b x^{\frac {1}{3}} - \left (-a b^{2}\right )^{\frac {1}{3}}\right )}{2 \, a b^{2}}\right ] \]

[In]

integrate(1/x^(1/3)/(b*x+a),x, algorithm="fricas")

[Out]

[1/2*(sqrt(3)*a*b*sqrt((-a*b^2)^(1/3)/a)*log((2*b^2*x - a*b + sqrt(3)*(a*b*x^(1/3) + (-a*b^2)^(1/3)*a + 2*(-a*
b^2)^(2/3)*x^(2/3))*sqrt((-a*b^2)^(1/3)/a) - 3*(-a*b^2)^(2/3)*x^(1/3))/(b*x + a)) + (-a*b^2)^(2/3)*log(b^2*x^(
2/3) + (-a*b^2)^(1/3)*b*x^(1/3) + (-a*b^2)^(2/3)) - 2*(-a*b^2)^(2/3)*log(b*x^(1/3) - (-a*b^2)^(1/3)))/(a*b^2),
 1/2*(2*sqrt(3)*a*b*sqrt(-(-a*b^2)^(1/3)/a)*arctan(1/3*sqrt(3)*(2*b*x^(1/3) + (-a*b^2)^(1/3))*sqrt(-(-a*b^2)^(
1/3)/a)/b) + (-a*b^2)^(2/3)*log(b^2*x^(2/3) + (-a*b^2)^(1/3)*b*x^(1/3) + (-a*b^2)^(2/3)) - 2*(-a*b^2)^(2/3)*lo
g(b*x^(1/3) - (-a*b^2)^(1/3)))/(a*b^2)]

Sympy [A] (verification not implemented)

Time = 3.07 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.41 \[ \int \frac {1}{\sqrt [3]{x} (a+b x)} \, dx=\begin {cases} \frac {\tilde {\infty }}{\sqrt [3]{x}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {3 x^{\frac {2}{3}}}{2 a} & \text {for}\: b = 0 \\- \frac {3}{b \sqrt [3]{x}} & \text {for}\: a = 0 \\\frac {\log {\left (\sqrt [3]{x} - \sqrt [3]{- \frac {a}{b}} \right )}}{b \sqrt [3]{- \frac {a}{b}}} - \frac {\log {\left (4 x^{\frac {2}{3}} + 4 \sqrt [3]{x} \sqrt [3]{- \frac {a}{b}} + 4 \left (- \frac {a}{b}\right )^{\frac {2}{3}} \right )}}{2 b \sqrt [3]{- \frac {a}{b}}} + \frac {\sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt [3]{x}}{3 \sqrt [3]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{b \sqrt [3]{- \frac {a}{b}}} & \text {otherwise} \end {cases} \]

[In]

integrate(1/x**(1/3)/(b*x+a),x)

[Out]

Piecewise((zoo/x**(1/3), Eq(a, 0) & Eq(b, 0)), (3*x**(2/3)/(2*a), Eq(b, 0)), (-3/(b*x**(1/3)), Eq(a, 0)), (log
(x**(1/3) - (-a/b)**(1/3))/(b*(-a/b)**(1/3)) - log(4*x**(2/3) + 4*x**(1/3)*(-a/b)**(1/3) + 4*(-a/b)**(2/3))/(2
*b*(-a/b)**(1/3)) + sqrt(3)*atan(2*sqrt(3)*x**(1/3)/(3*(-a/b)**(1/3)) + sqrt(3)/3)/(b*(-a/b)**(1/3)), True))

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.03 \[ \int \frac {1}{\sqrt [3]{x} (a+b x)} \, dx=\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{b \left (\frac {a}{b}\right )^{\frac {1}{3}}} + \frac {\log \left (x^{\frac {2}{3}} - x^{\frac {1}{3}} \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{2 \, b \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {\log \left (x^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{b \left (\frac {a}{b}\right )^{\frac {1}{3}}} \]

[In]

integrate(1/x^(1/3)/(b*x+a),x, algorithm="maxima")

[Out]

sqrt(3)*arctan(1/3*sqrt(3)*(2*x^(1/3) - (a/b)^(1/3))/(a/b)^(1/3))/(b*(a/b)^(1/3)) + 1/2*log(x^(2/3) - x^(1/3)*
(a/b)^(1/3) + (a/b)^(2/3))/(b*(a/b)^(1/3)) - log(x^(1/3) + (a/b)^(1/3))/(b*(a/b)^(1/3))

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.18 \[ \int \frac {1}{\sqrt [3]{x} (a+b x)} \, dx=-\frac {\left (-\frac {a}{b}\right )^{\frac {2}{3}} \log \left ({\left | x^{\frac {1}{3}} - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{a} - \frac {\sqrt {3} \left (-a b^{2}\right )^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{a b^{2}} + \frac {\left (-a b^{2}\right )^{\frac {2}{3}} \log \left (x^{\frac {2}{3}} + x^{\frac {1}{3}} \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{2 \, a b^{2}} \]

[In]

integrate(1/x^(1/3)/(b*x+a),x, algorithm="giac")

[Out]

-(-a/b)^(2/3)*log(abs(x^(1/3) - (-a/b)^(1/3)))/a - sqrt(3)*(-a*b^2)^(2/3)*arctan(1/3*sqrt(3)*(2*x^(1/3) + (-a/
b)^(1/3))/(-a/b)^(1/3))/(a*b^2) + 1/2*(-a*b^2)^(2/3)*log(x^(2/3) + x^(1/3)*(-a/b)^(1/3) + (-a/b)^(2/3))/(a*b^2
)

Mupad [B] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.20 \[ \int \frac {1}{\sqrt [3]{x} (a+b x)} \, dx=\frac {\ln \left (9\,b\,x^{1/3}-9\,{\left (-a\right )}^{1/3}\,b^{2/3}\right )}{{\left (-a\right )}^{1/3}\,b^{2/3}}+\frac {\ln \left (9\,b\,x^{1/3}-\frac {9\,{\left (-a\right )}^{1/3}\,b^{2/3}\,{\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{4}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{2\,{\left (-a\right )}^{1/3}\,b^{2/3}}-\frac {\ln \left (9\,b\,x^{1/3}-\frac {9\,{\left (-a\right )}^{1/3}\,b^{2/3}\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{4}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{2\,{\left (-a\right )}^{1/3}\,b^{2/3}} \]

[In]

int(1/(x^(1/3)*(a + b*x)),x)

[Out]

log(9*b*x^(1/3) - 9*(-a)^(1/3)*b^(2/3))/((-a)^(1/3)*b^(2/3)) + (log(9*b*x^(1/3) - (9*(-a)^(1/3)*b^(2/3)*(3^(1/
2)*1i - 1)^2)/4)*(3^(1/2)*1i - 1))/(2*(-a)^(1/3)*b^(2/3)) - (log(9*b*x^(1/3) - (9*(-a)^(1/3)*b^(2/3)*(3^(1/2)*
1i + 1)^2)/4)*(3^(1/2)*1i + 1))/(2*(-a)^(1/3)*b^(2/3))